Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
I
IntOMICS
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
BioInfoStatistics
IntOMICS
Commits
a1608d72
Commit
a1608d72
authored
3 years ago
by
Anna Pačínková
Browse files
Options
Downloads
Patches
Plain Diff
Upload New File
parent
ab4cff55
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
source_code/trace_plots.R
+118
-0
118 additions, 0 deletions
source_code/trace_plots.R
with
118 additions
and
0 deletions
source_code/trace_plots.R
0 → 100644
+
118
−
0
View file @
a1608d72
# edge_freq_thres is the edge weights quantile, which is the minimal edge weight accepted in the resulting network
#' @export
trace_plots
<-
function
(
mcmc_res
,
burn_in
,
thin
,
figures_dir
,
gene_annot
,
PK
,
OMICS_module_res
,
edge_weights
=
"MCMC_freq"
,
edge_freq_thres
=
NULL
,
gene_ID
,
TFtargs
)
{
if
(
!
(
edge_weights
%in%
c
(
"MCMC_freq"
,
"empB"
)))
{
print
(
'Warning: edge_weights argument must be either "MCMC_freq" or "empB".'
)
}
if
(
!
dir.exists
(
figures_dir
)){
dir.create
(
figures_dir
)}
# Trace plot of beta values
df1
<-
data.frame
(
beta
=
mapply
(
mcmc_res
$
beta_tuning
,
FUN
=
function
(
x
)
x
$
value
),
k
=
1
:
length
(
mapply
(
mcmc_res
$
beta_tuning
,
FUN
=
function
(
x
)
x
$
value
)),
accept
=
1
)
# RMS strength (threshold)
rms_strength
<-
abs
(
diff
(
mcmc_res
$
sampling.phase_res
$
rms
))
strength_threshold
<-
quantile
(
rms_strength
,
0.75
,
na.rm
=
TRUE
)
# custom.strength estimates the strength of each arc as its empirical frequency over a set of networks:
cpdags1
<-
unique
(
mcmc_res
$
sampling.phase_res
$
mcmc_sim_part_res
$
seed1
$
cpdags
[(
burn_in
/
thin
+1
)
:
length
(
mcmc_res
$
sampling.phase_res
$
mcmc_sim_part_res
$
seed1
$
cpdags
)])
cpdags2
<-
unique
(
mcmc_res
$
sampling.phase_res
$
mcmc_sim_part_res
$
seed2
$
cpdags
[(
burn_in
/
thin
+1
)
:
length
(
mcmc_res
$
sampling.phase_res
$
mcmc_sim_part_res
$
seed2
$
cpdags
)])
cpdag_weights1
<-
custom.strength
(
cpdags1
,
nodes
=
bnlearn
::
nodes
(
cpdags1
[[
1
]]),
weights
=
NULL
)
cpdag_weights2
<-
custom.strength
(
cpdags2
,
nodes
=
bnlearn
::
nodes
(
cpdags2
[[
1
]]),
weights
=
NULL
)
cpdag_weights1
<-
cpdag_weights1
[
cpdag_weights1
$
direction
>=
0.5
,]
cpdag_weights2
<-
cpdag_weights2
[
cpdag_weights2
$
direction
>=
0.5
,]
cpdag_weights1
$
edge
<-
paste
(
cpdag_weights1
$
from
,
cpdag_weights1
$
to
,
sep
=
"_"
)
cpdag_weights2
$
edge
<-
paste
(
cpdag_weights2
$
from
,
cpdag_weights2
$
to
,
sep
=
"_"
)
cpdag_weights
<-
merge
(
cpdag_weights1
,
cpdag_weights2
,
by
=
"edge"
)
cpdag_weights
$
strength
<-
round
(
rowMeans
(
cbind
(
cpdag_weights
$
strength.x
,
cpdag_weights
$
strength.y
)),
2
)
if
(
!
is.null
(
edge_freq_thres
))
{
strength_quant
<-
quantile
(
x
=
cpdag_weights
$
strength
,
probs
=
edge_freq_thres
)
cpdag_weights
<-
cpdag_weights
[
cpdag_weights
$
strength
>=
strength_quant
,]
}
total
<-
merge
(
cpdag_weights1
,
cpdag_weights2
,
by
=
c
(
"from"
,
"to"
))
svg
(
paste
(
figures_dir
,
"beta_values.svg"
,
sep
=
"/"
))
plot
(
df1
$
beta
~
df1
$
k
,
type
=
"l"
,
col
=
"darkblue"
,
main
=
"Beta values of adaptive MCMC"
,
xlab
=
"iteration"
,
ylab
=
"beta"
)
dev.off
()
svg
(
paste
(
figures_dir
,
"post_prob_edges.svg"
,
sep
=
"/"
))
plot
(
total
$
strength.x
~
total
$
strength.y
,
main
=
"Consistency of edges posterior probabilities"
,
xlab
=
"MCMC run 2"
,
ylab
=
"MCMC run 1"
)
abline
(
0
,
1
,
col
=
"orange"
)
dev.off
()
svg
(
paste
(
figures_dir
,
"convergence_RMS.svg"
,
sep
=
"/"
))
plot
(
rms_strength
,
main
=
"Convergence RMS strength (C.RMS.str)"
,
pch
=
18
,
col
=
"gray30"
)
abline
(
h
=
strength_threshold
,
col
=
"#E69F00"
,
lwd
=
1.5
)
text
(
label
=
paste
(
"3rd quartile of C.RMS.str = "
,
round
(
strength_threshold
,
3
),
sep
=
""
),
x
=
100
,
y
=
strength_threshold
+0.015
,
col
=
"#E69F00"
)
dev.off
()
PK
<-
PK
[
PK
$
src_entrez
%in%
unlist
(
lapply
(
OMICS_module_res
$
omics
,
colnames
)),]
PK
<-
PK
[
PK
$
dest_entrez
%in%
unlist
(
lapply
(
OMICS_module_res
$
omics
,
colnames
)),]
if
(
gene_ID
==
"entrezID"
)
{
edge_list
<-
matrix
(
data
=
c
(
cpdag_weights
$
from.x
,
cpdag_weights
$
to.x
,
cpdag_weights
$
strength
,
rep
(
NA
,
length
(
cpdag_weights
$
strength
)),
rep
(
NA
,
length
(
cpdag_weights
$
strength
))),
nrow
=
length
(
cpdag_weights
$
strength
),
dimnames
=
list
(
c
(),
c
(
"from"
,
"to"
,
"weight"
,
"edge_type"
,
"edge"
)))
# needs to be sorted because of colors in the final figure
node_list
<-
unique
(
c
(
edge_list
[,
"from"
],
edge_list
[,
"to"
]))
edge_list
[,
"edge"
]
<-
paste
(
edge_list
[,
"from"
],
edge_list
[,
"to"
],
sep
=
"_"
)
return_list
<-
edge_types
(
mcmc_res
=
mcmc_res
,
PK
=
PK
,
gene_annot
=
gene_annot
,
edge_list
=
edge_list
,
node_list
=
node_list
,
OMICS_module_res
=
OMICS_module_res
,
edge_weights
=
edge_weights
,
TFtargs
=
TFtargs
)
}
else
if
(
gene_ID
==
"gene_symbol"
)
{
from
<-
as.character
(
gene_annot
$
gene_symbol
[
match
(
cpdag_weights
$
from.x
,
gene_annot
$
entrezID
)])
from
[
is.na
(
from
)]
<-
cpdag_weights
$
from.x
[
is.na
(
from
)]
from
[
regexpr
(
"entrezid"
,
from
)
>
0
]
<-
tolower
(
as.character
(
gene_annot
$
gene_symbol
[
match
(
toupper
(
from
[
regexpr
(
"entrezid"
,
from
)
>
0
]),
gene_annot
$
entrezID
)]))
to
<-
as.character
(
gene_annot
$
gene_symbol
[
match
(
cpdag_weights
$
to.x
,
gene_annot
$
entrezID
)])
edge_list
<-
matrix
(
data
=
c
(
from
,
to
,
cpdag_weights
$
strength
,
rep
(
NA
,
length
(
cpdag_weights
$
strength
)),
rep
(
NA
,
length
(
cpdag_weights
$
strength
))),
nrow
=
length
(
cpdag_weights
$
strength
),
dimnames
=
list
(
c
(),
c
(
"from"
,
"to"
,
"weight"
,
"edge_type"
,
"edge"
)))
# needs to be sorted because of colors in the final figure
node_list
<-
unique
(
c
(
edge_list
[,
"from"
],
edge_list
[,
"to"
]))
edge_list
[,
"edge"
]
<-
paste
(
edge_list
[,
"from"
],
edge_list
[,
"to"
],
sep
=
"_"
)
return_list
<-
edge_types
(
mcmc_res
=
mcmc_res
,
PK
=
PK
,
gene_annot
=
gene_annot
,
edge_list
=
edge_list
,
node_list
=
node_list
,
OMICS_module_res
=
OMICS_module_res
,
edge_weights
=
edge_weights
,
TFtargs
=
TFtargs
)
}
else
{
print
(
'gene_ID argument must be either "entrezID" or "gene_symbol"'
)
}
# end if else if else (gene_ID=="entrezID")
net_weighted
<-
graph_from_edgelist
(
return_list
$
edge_list
[,
c
(
"from"
,
"to"
)])
V
(
net_weighted
)
$
color
<-
return_list
$
node_list
[
match
(
as_ids
(
V
(
net_weighted
)),
return_list
$
node_list
[,
"label"
]),
"color"
]
palette
<-
return_list
$
node_palette
names
(
palette
)
<-
1
:
length
(
palette
)
palette
<-
palette
[
unique
(
V
(
net_weighted
)
$
color
)]
V
(
net_weighted
)
$
label
<-
return_list
$
node_list
[
match
(
as_ids
(
V
(
net_weighted
)),
return_list
$
node_list
[,
"label"
]),
"label"
]
E
(
net_weighted
)
$
edge
<-
return_list
$
edge_list
[
match
(
sub
(
"|"
,
"_"
,
as_ids
(
E
(
net_weighted
)),
fixed
=
TRUE
),
return_list
$
edge_list
[,
"edge"
]),
"edge_type"
]
E
(
net_weighted
)
$
weight
<-
return_list
$
edge_list
[
match
(
sub
(
"|"
,
"_"
,
as_ids
(
E
(
net_weighted
)),
fixed
=
TRUE
),
return_list
$
edge_list
[,
"edge"
]),
"weight"
]
# arrow in the network plot
V
(
net_weighted
)
$
degree
<-
igraph
::
degree
(
net_weighted
,
mode
=
"in"
)
V
(
net_weighted
)
$
degree
<-
normalise
(
V
(
net_weighted
)
$
degree
,
to
=
c
(
3
,
11
))
return
(
list
(
edge_list
=
return_list
$
edge_list
,
node_list
=
return_list
$
node_list
,
borders_GE
=
return_list
$
borders_GE
,
borders_CNV
=
return_list
$
borders_CNV
,
borders_METH
=
return_list
$
borders_METH
,
node_palette
=
palette
,
net_weighted
=
net_weighted
))
}
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment